DEVELOPER MANUAL

ser Guide | (Sofware | (About Us | | Login Help | Orag and Bro
J || J | J ——

Figure 1

In Figure 1 the structure of the website can be observed. Before delving into each page and
functionalities some important notes:

The documents folder is not accessible to the user as it is purely a backend
resource to hold all photos and documents used by various webpages within the website.

The pages contained within the pink highlight box are only accessible after the
user has logged into the website via the patient or doctor portal.

The pages User Guide, Software, About Us, and Index are accessible on every
page. Therefore, their connections were not displayed to reduce noise and avoid
confusion.

All functionalities use API calls that trigger the lambda associated with it. All the
API calls occur in JavaScript within the HTML files for the webpage and all lambda
functions are written in JavaScript with small bits of MySQL when accessing the
database.

The only way to access the database is through an API call to trigger a lambda
function that will handle all database queries.

The system is programed in the following languages: HTML, CSS, JavaScript,
MySQL, and Python. A basic understanding of all these languages and AWS is assumed
when describing the functionalities of the system as this is a developers manual intended
for developers only.

All API calls are of the POST method type.
User Guide:

The user guide webpage holds all manuals and safety guides. The manuals include
Developer Manual, User Device Guide, User Manual, and Safety Guidelines. This page contains
standard HTML, and its corresponding CSS style guide is named style deviceGuide.css.

Software:

This page holds all the requirements for the Senior Design class and should be removed if
the website is put into production. This includes all six milestones, presentations, and
preliminary reports. No deviation from standard HTML occurs with the CSS file named
style software.css.

About Us:

This is where we highlight the key features of the SmartStride system (including the
database and website) are displayed. The HTML code is standard with the style sheet names as
style aboutUs.css

Login Help:

Login help allows a user to reset their password if they can input their username and
answer the security question associated with their account. The database is accessed, and the old
password is deleted and the new hashed password is saved to the database. The HTML contains
some JavaScript. The JavaScript code collects the username entered by the user then the
ITW_PasswordRecovery API is used to trigger the lambda function with the body containing the
input username. The lambda then searches the database to see if the user exists and will return a
body containing the security question and answer if the user exists if not the lambda will return a
body containing the response of “User not found”. If the user exists, the security question will be
displayed to the user with a response box and an enter button. If the user does not fill the answer
out the message 'Please provide an answer to the security question.' Will be displayed to the user.
If the user answers the script will call the API again to send the answer to the same lambda
function that will check the database and compare the results and send a correct or incorrect
response back to JavaScript who will convert it to a readable response for the user. Upon a
correct response the UI will change again, allowing the user to enter a new password. After
entering the new password, the API will be called again to send the password to the lambda
where it will be hashed and saved to the database. The UI will then display the response code
from the lambda saying whether the password change was successful or not. The style is named
style loginHelp.css.

Index:

The homepage of the website is named index because it is required by AWS for the main
page to be named index. Trying to change the name will result in errors when trying to deploy
the website through AWS Amplify. The homepage contains links to the login portals as well as a
link to the sign up page. The HTML and CSS is straightforward, and the style is called
style_index.css.

Sign Up:

The sign up page is a form that the user must fill out to access the highlighted pink area
of the website detailed in figure 1. The form collects the users first and last name, security
question and answer, username and password, and asks the user to select if they are a patient or
doctor. Upon selecting patient the user is asked to enter their doctors username and a security
blurb appears informing the user that by typing in a doctors username they are legally allowing
them to see, manipulate, and analyze their patient data. The code is quite simple when they select
doctor nothing triggers but when the user selects patient it triggers the JavaScript code within the
HTML that changes the blurb and user input box for doctors username to visible. Upon

completing the form, the user clicks enter which will trigger the JavaScript again. First the data
from the form is collected then the API signUpAPI is called which takes the user data and sends
it to the corresponding lambda function. The lambda then checks the database to make sure the
username is not already within the database and if it is not the information will be saved to the
database. Afterwards the response code is sent back, and a message of success or failure is
displayed. After a successful response is returned, the message is displayed then the user is
redirected to the login page for their user type (patient or doctor). The style sheet is named

style signUp.css.

Sign In:

The sign in pages for doctor and patient are identical apart from dialog regarding user
type and therefore their sections have been combined. The sign in portals contain links to the
opposite sign in portal, login help page and sign up page. The JavaScript codes functionality
works as follows: The user enters their username and password which triggers the JavaScript that
immediately calls the API getUserPass that will send the username and password to the
corresponding lambda function that will first check what kind of user it is and search the
corresponding database table for that user’s username. Once the username is found the lambda
will compare the two hashed passwords and send a response code back. Upon success or failure,
a message is displayed to the user. Messages are as follows: Login failed., An error occurred.
Please try again., User not found., and Login Successful. The style is named
style patientLogin.css for both login pages.

Drag and Drop:

The drag and drop page are interesting because the API and lambda functions are
accessible through the webpage and from the Raspberry Pi app. The drag and drop page is only
accessible through the patient dashboard and is a back up method of uploading patient data in
case of Raspberry Pi failure. It will only accept CSV files, and it can accept two kinds of data the
step count that is used for the pie chart models that are used on the patient page and past results
page and the accelerometer over time data that is used to create the graph on the patient page that
is only visible to the doctors. The page has a section where a user can drag a CSV file and “drop”
it that will trigger the JavaScript of the webpage through the event listener, or the user can click
on the box and the JavaScript will be triggered pulling up the user’s documents folder on their
PC. Once a file is selected for uploading the file will be parsed and the API DragDropHandler
will be called and sent through the API will be the CSV file data and the patient’s username.
Since only patients can have patient data the user type is not needed by the lambda function.
Lambda will first check the parsed CSV data to check how many rows it contains. If there are
only two rows, which is the maximum number of rows the pie chart CSV files can hold, it will
put the data into the pie chart data table within the database. If the parsed data is more than two
rows it is the graph data and will be inputted into the patient session data table. Before either
form of data is inputted into the database the session number needs to be assigned. The Lambda
will do this by checking the username in the database to see if they have any other data from a
previous session. If the patient does the lambda will take the session number from the data and
add one to the number for the new data. If there is no session number meaning no previous data,
the lambda will assign the session number as one. This same thing happens before the pie chart
data is uploaded as well with the additional adding of the date of upload to allow the data to be
separated by month. This same process occurs when CSV files are uploaded from the Raspberry

Pi. While this is happening the JavaScript within the HTML file will display the file’s name
along with the uploading status indicator. After the lambda returns a response of successful or
failed upload through the API the JavaScript will change the indicator to show success or failure.
Upon successful upload the size of the CSV file will also be displayed. The style is named

style dragAndDrop.css.

Past Results:

The past results page is straightforward as it displays the pie charts that are separated by
month. This means that even if the patient has multiple sessions of data from one month the data
will be combined into one chart. The page allows for filtering by months and years. The
JavaScript for this page contains five methods. The first method is fetchPastResults(). This
method instantly occurs when being redirected to the page and takes the username of the patient
and calls the API GetPieChartData to trigger the lambda function that will collect all data under
that username regardless of when the data occurred. At the end of this function the next method
is called, createPieChart(). This is where the actual visualization of the pie chart is made. Taking
the data collected by lambda the method will take the number of normal and ITW steps and
devide them by the total number of steps taken to create the pie chart. This occurs for how many
months the user has step data for. The next method is applyFilters(). This method is triggered by
the event listener that watches if the user applied filters. The dates selected are given to the next
method fetchFilteredResults(). This method does the same thing as fetchPastResults() but it gives
the lambda function a time constraint so only the data within the dates are displayed. The next
method is resetFilters(). This method will wipe the current dates from the filter menu and will
call fetchPastResults() to retrieve all the results again.

Doctor Dashboard:

The doctor’s dashboard is a list of their patients. The user has options of what they can do
on this page. The list of patients has a view button that will take the doctor to that patient’s page
and has a drop-down menu that allows the doctor to remove a patient from their patient’s list.
The doctor also has the option to add a patient by typing in the patient’s username and clicking
the add button. Both functionalities are handled by an API call that will trigger. The first API is
RemovePatient that will take the username of the patient and send it to the lambda function that
will go into the doctors and patients table in the database and remove the patient from the list of
that doctors’ patients in the doctors’ table and will remove the patients listed doctor and return a
response code. The other API is called AddPatient and will take the username of the patient and
check if that patient already has a doctor. If yes, then a response code will be sent back
explaining the failure. If the patient does not have a doctor, the patient’s table will be updated
with the doctor’s username and the doctor’s patient list will be updated within the doctor’s table
in the database and a response code will be returned. All responses will be shown to the user
through a small pop-up window.

Patient Dashboard:

Lastly, the patient dashboard. This is the largest of all the pages in terms of code length
and number of functionalities. When a user enters the page after logging in multiple triggers go
off in order. The First API to be called is GetPatientData which functions by taking the username
from the login page and the lambda function searches the database for the patients information
within the patient table in the database. Upon finding the patient all information from the table is

returned except for the password, security question and answer. This information is then used to
fill out the first two sections of the patient dashboard: Patient Information and Practitioner
Information. The name of the patient will be displayed as well as their last data upload date along
with more information. This will also be searching for the doctor’s information from the doctor’s
table. The lambda will take the username of the doctor that is stored in the patient table and will
complete a second search in the doctor’s table to take the information. Next the goals is loaded
onto the patient page. This will occur one of two ways based on the type of user that is accessing
the page. If the patient is accessing the page the method loadGoals() will call the API
GoalHandler and send the patients username to the lambda that will use it to search the

patient goals table and will retrieve all the goals for that patient and whether they are completed
or not and send them back through the API. After the goals are fetched the goals will be saved in
a list that is displayed through the creation of the goalsContainer. Each goal will have a check
box next to it and if the goal is completed the check box will be checked if not it will be left
blank. If the user is a doctor the same API will be called in the same way but the method will
function differently instead of just displaying the checklist the addGoalForm will be created.
This form allows doctors to add, remove or change the status of goals. If the patient has no goals
the corresponding container for user type will still be created. If the doctor chooses to add a goal
the method addGoal() will be executed. It will take the text of the goal and the username of the
patient that is associated with the goal and send it to the GoalHandler API and then to the lambda
that will update the goals table to include the new goal. If The goal is marked completed or
unmarked completed the method updateGoal() will execute sending the goal, and patient
username, and updated statis of the goal to the same API GoalHandler. The lambda will then find
the goal in the table and update the status of the goal. The last one is if a goal is deleted by a
doctor and this will trigger the deleteGoal() method. This will create a prompt asking if the user
is sure they want to delete the goal. If yes then the GoalHandler will be called and sent the goal
and patient username that will be used by the lambda to delete. Then loadGoals() is recalled to
refresh the goal list. Next the fetchAndDisplayPieChartData() will trigger. This is the exact same
code that is completed in the Past Results page along with the CreatePieChart() that is called by
fetchAndDisplayPieChartData(). Since the functionality has already been explained we will
move on to the final trigger. Lastly the fetchAndDisplaySessionData() method within the
JavaScript of the HTML file will trigger. This function will handle the graph that is displayed
only to the doctor and will only be generated if the user type is doctor. The API ITW_GetCSV
will be called and given the patients username to pass to the lambda function. The lambda will
then go to the patient session_data table within the database and retrieve all the patient’s data for
the last session and will create a graph using the data. The accelerometer data is on the X axis
and time is on the Y axis with EMG points on the graph. This method also handles the UI while
loading it will display the message “Loading patient data...” with a loading wheel while the data
is retrieved, and the graph is created. Once the graph is ready the message and loading wheel will
be deleted and replaced by the graph. The patient dashboard if accessed by a doctor triggers the
UI to display certain things that are hidden from the patient. Those items are the graph and the go
back to clinician dashboard button.

Amazon Cloud

n

Response Code _ Response Code Established Connection = =
Connaction Via API ik ﬂ.’..’l] . & _ E@Z
CSV File(s) > CSV File(s) v Parsed CSV Data g

Raspberry Pi Amazon AP| Gateway Lambda Amazon RDS

Figure 2

In Figure 2 the connection from the Raspberry Pi to the database is depicted. The Pi
contains python code that creates a simple GUI that the user can access and select start
monitoring this will monitor a folder on the Pi called “CSV Data”. After a patient completes a
session with the SmartStride device data is sent via Bluetooth from the ESP 32 to the Raspberry
Pi and on the P4, it is run through the machine learning code to be filtered and segmented and the
extracted data is saved as a CSV file in the CSV Data folder. When a new CSV enters the folder,
it will trigger the logic of the python code and send that CSV to the API DragDropHandler. This
is the same CSV used on the Drag and Drop webpage so it will not be explained again as the
functionality is the exact same. The Pi app has a message board where the user will get updates
of what the app is doing. Firstly, it will state that it has begun monitoring then it will display the
file if a new CSV file is found and send it to the API when the API sends a response back to the
Pi app it will display if it was successfully uploaded or not. If the user clicks stop monitoring the
message “Monitoring completed” will be displayed on the message board.

Amazon Cloud

<Response Code _Response Code _Data || Query Response || Nothing
Optional: Response Body Sl “Optional: Response Body IX N E@;
/
API Trigger L Lambda Trigger N 0 Query || Data P
’ Optional: Response Body" v
ser

Optional: Response Body
AWS Amplify ‘Amazon AP| Gateway Lambda Amazon RDS

Figure 3

In figure 3 you can see the basic structure of how the website communicates with the
database through the lambda and API. First an API call must be done using the APIs endpoint.
The endpoint acts like an address to identify what API is being called. Each API contains a
trigger. The trigger is what calls the lambda function and makes it execute. All responses are
created within the lambda code and the response body type that is allowed is assigned in the API
Gateway. All access control headers are also assigned in the API Gateway. This determines what
URLs are allowed to call an API. Currently all APIs have the control header of ‘*’ meaning any
URL is allowed to call the API. This is what allows the Pi app to call the API. All lambdas need
to be given access to the database through IAM roles and VPCs and subnets. These three items
control what has access to any service in AWS. Meaning if the VPC of the RDS database is 3
then the lambda must also have the VPC of 3 assigned to it. Of course, the actual VPCs have
more complex names, and it is important to keep track of what VPC is assigned where. The
lambda must also have the IAM Role of VPC meaning the lambda can have and use the VPC.
The subnets must also be added to the lambda in a similar way as the VPCs. Subnets are a more
exact version of the VPCs. A single VPC can have multiple subnets attached to it in a parent
child relationship. So, if VPC 3 is assigned to a lambda subnet 1 or 2 need to be assigned to the

lambda as well. The most important VPC is default (sg-0929797a1b9d70358). This is the VPC
that allows a developer to add their IP address to the security group’s inbound rules. The security
groups can be managed through the EC2 menu in AWS. EC2 is the managing service for all

VPCs, subnets and security groups.

IMPORTANT: Inbound rule sgr-0f22ce765d538aaa0 CANNOT be deleted. Deleting this
inbound rule will prevent all access to the database and the website will be completely

unfunctional.

To update the HTML, CSS, or JavaScript contained in a HTML file all files must be
zipped in a folder then the zip folder will need to be deployed through the Amplify service. This
will take a few minutes to deploy. The name of the zip folder does not matter.

The CloudWatch Logs is the console for the lambda functions each lambda has its own
log group that can be accessed, and every use of the lambda will be recorded in CloudWatch and

can be reviewed for statistical or debugging work.

Amazon Web Services has many tutorials on their website to help guide the development
of the SmartStride website.

The RDS database structure is displayed below.

username password first_name last_name doctor security_question security_guestion_answer cav_file
} |athenepic $2a5108RMimY IfbgMKwhVKZRnat.uCqGGMNvbC... Bela Perdomo frivybela dty Boca Raton
cgrummer £2a510525vATZH 1HZdjoovamko 5V, 82849IWYM... Cianna Grummer GreenEggs pet Lexi
Dummy $2a51083kLrbNZmW\WagnoFzKFeYwulEvYZhM... Dummy Patient GreenEggs pet Dog
Patients table.
id patient_id session_jd session_date Mormal Mild Moderate Severe Total
P |32 cgrummer 1 2025-03-24 18:43:03 13 25 3 9 50
33 cgrummer 2 2025-03-24 18:44:17 20 15 -] 9 50
35 cgrummer 3 2025-03-24 19:46:53 13 25 3 g 50
- HLILL HULL
Pie chart data table.
id patient_id goal_description completed created_at
o1 cgrummer Stop ToeWalking 0 2024-11-17 17:51:31
3 Durnmy Don'tBe a Dummy 0 2024-12-12 00:39:55
4 cgrummer hello i 2024-12-12 19:39:17
[HULL |

Patient goals table.

username password first_name last_name security_gquestion security_gquestion_answer patients_list

Suessr Two Fish ["cgrummer™]

GreenEggs AndHam Theodor How many fish?
[HULL | [HULL [HULL | [HULL

Doctors table.

https://us-east-2.console.aws.amazon.com/ec2/v2/home?region=us-east-2#SecurityGroups:search=sg-0929797a1b9d70358

session_id

1
2
3
5
5
6
7
8

patient_id
cgrummer
cgrummer
cgrummer
cgrummer
cgrummer
cgrummer
cgrummer
cgrummer

time
0.0027
0.0034
0.0081
0.0108
0.0135
0.0162
0.0189
0.0216

acc_1_x
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

acc_1
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Patient session data table.

acc_1z
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

gyro_1_x
0.0000
0.0000
0,0000
0.0000
0.0000
0.0000
0.0000
0.0000

ayro_1_y
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

gyro_1_z
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

emg_1_value
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

acc_2_x
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

acc_2_y
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

acc_2 z
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

ayro_2_x
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

ayro_2_y
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

ayro_2_z
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

emg_2_value
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

emg_3_value
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

