
Milestone 2 

Title: 

SmartStride: Toe-Walking Rehab 

Names & Emails: 

Cianna Grummer cgrummer2019@fit.edu 

Alec Anzalone aanzalone2021@fit.edu 

Kiera Ceely kceely2021@fit.edu 

Bela Perdomo iperdomo2021@fit.edu 

Caleb Phillips cphillips2021@fit.edu 

Faculty Advisor: 

 Dr. Gu gul@fit.edu 

Progress of Milestone 2: 

Task Progress To Do 

Create patient login page 100% N/A 

Create practitioner login page 100% N/A 

Establish security of logins 100% N/A 

Create forgot password/ help links and page 100% N/A 

New users sign up page 100% N/A 

New users sign up functions 100% N/A 

Create login functions 100% N/A 

 

Discussion: 

• Create patient and practitioner login page: 

o Creating the login pages for practitioners and patients was not very difficult. 

Within the html I created a form that collects the username and password entered 

by the user with a submit button. Embedded in the html is JavaScript code that 

connects to the AWS API through a POST method that takes the username and 

password and sends it as a body to the API. Connecting to the API gave me some 

trouble in finding the correct syntax to establish the html to API connection. After 

mailto:cphillips2021@fit.edu
mailto:gul@fit.edu


the connection is established the API sends the information to the Lambda login 

function then sends a response back to the API that sends it back to the JavaScript. 

Based on the response received from the API the page will be redirected to the 

user’s account. Under Login Functions task I will go into more detail about the 

Lambda and API. 

• Establish security of logins: 

o Establishing the Security of the logins gave me some difficulty in finding a viable 

method on how to make the passwords secure in every step of the API to Lambda 

to Database and back process. I found a package called bcrypt that allows me to 

hash the passwords from when they are first entered in the sign up or login. When 

signing up the password is stored in the database hashed so when the lambda pulls 

the password to check if the user entered the correct password, it comes back 

hashed. The lambda during a login will be sent the hashed version of the 

password that the user entered to compare. Simple syntax was used to compare 

hashed passwords. 

• Create forgot password/help links and page: 

o The forgot password will take the user to a new page that has them input their 

username and based off of if the user is found or not the user will be able to 

answer their security question. If the user answers the security question correctly, 

they will be given their password to login. This information will be taken in as a 

form and much like the login and sign up the input will travel through the API to 

the lambda function that will verify if the user exists and if their security question 

is answered correctly and send the unhashed password to be displayed to the user. 

If the user is not found questions will be shown such as: “Did you login to the 

correct patient or practitioner login?” “Don’t have an account? Sign up here:” The 

second question will take them to the sign-up page where they can create their 

account while the first question prompts the user to determine if they are using the 

wrong login form or not. 

• New users sign up page: 

o The sign-up page works similarly to the login pages in that it has a form in the 

html that takes in the user input. The input is longer asking for first name, last 

name, security questions, etc. This data is sent through the same API as the login 

functions but using a different API resource. The resource still uses a POST 

method so we can send a body (the user input) to the sign-up lambda.  

• New users sign up functions: 

o The functions used to complete the sign-up feature is the new API resource with a 

POST method that connects to a sign-up lambda function. The lambda function is 

in JavaScript which gave me a bit of trouble since I have never used JavaScript 

before this project. The sign-up lambda will determine what kind of user is 

signing up based on the user input and based on what the user has selected the 



lambda will connect to the database and input the information into the 

corresponding table, patient or practitioner, after hashing the password of the user. 

The lambda function will then send a message back to the API stating if the sign 

up was successful or not. The API will send the message to JavaScript within the 

sign_up.html. Based on the response received the page will be redirected to the 

login page of the patient or practitioner based on the user type that signed up. 

• Create login functions: 

o The login function was the hardest part of milestone 2 because it is the first 

lambda function and API call that I made. The function works very similar to the 

sign-up function but instead of inputting information into the database the lambda 

function will connect to the database and search in the table for a username 

matching the one used to try and login. If no user is found it will send a response 

to the html saying no user was found. If a user was found the password will be 

pulled from the database and compared to the password used to try to login. If the 

passwords do not match the lambda will send a response of invalid credentials. If 

the username and password are both a match the lambda will send a response 

back saying it was a successful login. The responses gave me some trouble 

because they are coded under numbers so if there is an error it will send response 

401 but if it is successful, it will send a response code in the 200s. I had trouble 

with this on the html side because it took any 200 responses and claimed it was 

successful even if it was a response 202 (Invalid credentials). I fixed this issue by 

checking the exact response code that was given instead of checking if that 

response code was in the “ok” or 200s range. I also had issues with establishing 

the connections between the APIs, Lambdas, and html codes because AWS 

operates on VPC security groups that say what functions are allowed to do what. 

VPCs are like security cards allowing my Lambda function to access the database 

or my HTML code to access the API call. This was not obvious when setting the 

functions up. My other issue was establishing the triggers and layers for my 

lambda functions. The layers are basically import packages that you need if you 

want to use MySQL or bcrypt, so I had to create layers for these packages. 

Triggers are how the lambda function connects to the API resource. Since one API 

can hold many different resources and each resource can hold many different 

types of methods the trigger is needed to specify which resource and which 

method within that resource the lambda is going to be using.  

Contribution: 

 I have created all the functions, API calls, API resources and methods, Lambda functions 

and database connections, as well as creating all the VPC security groups that are needed to 

complete the functions myself. 



 Plans for Milestone 3: 

 

Task Progress To Do 

Connect the logins to 

individual patient and 

practitioner pages 

10% Add to the existing API and 

Lambda to create pages 

Add patient button to 

practitioner page 

0% Create the button and connect 

the correct page 

Add patient page 0% Create page with a form to 

add a patient 

Add patient functions 45% Create new API resource and 

method to connect to new 

lambda function 

Use “Dummy” data to be 

displayed to patient and 

practitioner  

15% Get “Dummy” data from 

BME group, determine what 

should be displayed, Use the 

data to create functions to 

display the data 

 

Discussion (Future Milestones): 

• Connect the logins to individual patient and practitioner pages: 

o I need to collect the data and display individual information when logging into a 

user’s page. Currently a static page is displayed after logging into a profile. I will 

need to make the practitioner’s page display a list of their patients along with 

links to their patients’ profiles that will hold the data from the individual patient 

selected. The patients page when logging in will need to update dynamically for 

whoever has logged in. To accomplish all this my plan is to collect all the data 

form the database table for the patient or practitioner then split their information 

string into variables that can be displayed in different areas of their profile page to 

make it “personalized”. For the data sections I will need the “Dummy” data 

before I can accurately display that information. 

• Add patient button to practitioner page: 

o Within the practitioner’s page they should be able to add or remove patients from 

their patient list. If a doctor gets a new patient, it should be updated when the 

patient signs up but if an existing patient wants to switch practitioners their 

current practitioner will need to remove them from their patients list then the new 

practitioner will need to add the patient to their patient list. This should be a 

simple form that asks for the practitioner’s username and the patient’s username 

that they want to add or remove to send the information to the lambda function 

that will carry out the task. 



• Add patient page: 

o A new page will be needed to hold the form to enter the patient that the 

practitioner wants to add or remove. This page will also hold the JavaScript that 

connects to the API resource for the lambda function to be called. 

• Add patient functions: 

o A new API resource and method will need to be created as well as a new lambda 

function that will handle the adding or removal of the patient from the 

practitioner’s patient list within the database. This will update the foreign keys 

within the practitioner’s table and subsequently update the practitioners profile 

page where a list of their patients is shown. 

• Use “Dummy” data to be displayed to patient and practitioner: 

o I will want to create a display for patient data that can be seen by the practitioner. 

This will be shown to the patient as well but in a more digestible way such as a 

graph showing when their ITW steps are more frequent or if they have increased 

or decreased their ITW steps in the past week or month by some percentage. I will 

want to create the displays based off the dummy data but any refinement on the 

displays will need a fixed form of data that my group is still unsure of. I will be 

trying to keep the input of data flexible while still displaying some form of data. 

This is subject to change based on my group’s determination of the format of the 

data that will be received by the website and/or the database. 

▪ It is also important to note that based on my group’s determinations the 

format of the data displayed will change as well as how much progress 

will be made in this area. Since this is very flexible, I will try to create the 

functionality of displaying data but without knowing the format of the 

input I may need to redo this task in milestone 4 depending on what my 

group decides.  

Meeting Dates: 

 Wednesdays 1pm-2pm 

 

Client Feedback: 

 Group Feedback: 

• The UI was improved greatly 

• Instead of clinicians use practitioners 

• SmartStride was determined to be one word not two 

• The format of the patient data collected by the device may change from CSV files 

to graphs or something else to be determined later 

o Keep the data input versatile/ flexible  



• Graph.py (The Python file used to create the graphs of data) may be written by 

Alec  

Dr. Chan’s Feedback: 

• Discuss how to present the data to the doctors as they might not know how to read 

the data graphs 

• Determine what a doctor would find helpful from our collected data when 

diagnosing a patient with ITW  

o Talk to the BME group about this  

• Possibly include a timeline of when frequent ITW steps are taken  

o Knowing when the ITW steps are most frequent might help the patients in 

their rehabilitation process 

 

Advisor Meetings: 

 Discussion happened over email. The BME midterm presentation will happen in the 

week of 10/28/24 where I will be able to give a proper update. 

 

Advisor Feedback:  

•  

Faculty Advisor Signature: _______________________________ Date: ________  

Evaluation by Faculty Advisor:  

Task for Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the scores 

to pkc@cs.fit.edu  

Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or write 

down a real number between 0 and 10)  

Cianna 

Grummer 

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 

 

Faculty Advisor Signature: _______________________________ Date: __________ 

 

mailto:pkc@cs.fit.edu

