Milestone 3 SmartStride

By Cianna Grummer

Milestone 3

Task	Progress	То До
Connect Logins to profiles	100%	N/A
Add/ Remove Patient Page	100%	N/A
Add/ Remove Patient Functionalities	100%	N/A
Add/ Remove Patient button to Clinician pages	100%	N/A
Use "dummy" data to display information to patients and doctors	100%	N/A

Connecting Logins to Profiles

- When a user logs into account user info is pulled
 - •Treatment goals
 - •Name
 - Doctor information
 - •Last PT session data
 - •Patient list
- Treatment goals table created in database
 Only doctors can edit list of goals
 Only patients can have goals

Clinician vs Patient View

- When doctor views a selected patient's dashboard:
 - •Treatment goals are editable
 - "Back to clinician dashboard" button is visible
 - •EMG analysis visible
 - •Foot angle analysis visible
 - •Gait analysis with step classification visible
- Hidden when a patient logs into their profile

Removing a Patient

- Clinician's patient list now has three dots next to each patient
 - •When clicked a dropdown menu appears with a "remove patient" button
 - •Confirmation prompt appears when clicked
 - •If yes patient is removed from doctor's patient list in both website and database
 - Patient's doctor is also set to null following this action

Adding a Patient

- Clinician's dashboard has an "Add Patient" input field and button
- Enter patient username and click "Add Patient" button
- System checks if patient has a doctor already and is available to assign a new doctor
 Must be null
- If available, patient is added to doctor's patient list and the doctor is assigned to selected patient

Displaying Data Functionality

- New table in database patient_session_data
- Holds patient ID, Session ID, Timestamp, Accelerometer 1xyz and 2xyz, Gyroscope 1xyz and 2xyz, and EMG 1, 2, and 3 data
- When a patient or clinician opens patient dashboard a loading wheel appears
 - •Lambda checks the table for patient's data
 - •Uses every 10th row to create a graph
 - Over 64,000 rows of data from one session
 - Working with BME team to find the best amount of data that should be collected

Team Feedback

- Display the names instead of usernames
- The format of the patient data collected by the device may change from CSV files to graphs or something else
- Alec is working on creating the graphs to be displayed on the website *ML for step identification process is complete*
- Add gait information, foot angle analysis, and EMG analysis to the website in the patient dashboard
- Add a goals and instructions section of the patient dashboard to facilitate at-home therapy

ITW and its Complicating Factors

- ITW or Idiopathic Toe Walking is a condition that causes one to walk on their toes.
- In most cases kids outgrow it by 5 but it lingers in patients with other disorders
- It requires intensive physical therapy and multiple follow ups in order to be monitored
- Typical treatments include hard cast braces,
 specialized shoes, and individualized physical
 therapy
- Long term it can cause muscle to stop growing and permanent tendon damage only corrected by surgery

From Device to the Raspberry Pi

Sensors:

3 IMUs (Inertial Measurement Unit) 1 Myoware Module 2.0 (EMG - Electromyography) Haptic Feedback Buzzer

Machine Learning

- EMG+IMU training data collected for multiple subjects
- Generated step library for template-matching based step identification
- Step detection implemented into Raspberry Pi for testing
- ITW Classification implemented into Raspberry Pi for testing

BME Semester Update Continued

3D Models:

- Created through onshape software.
- Have moved through several different versions of sensor case models.
- Created these cases to be able to attach the different sensor electronics to the compression sock.

Milestone 4

Task	Progress	То До
Setup AWS's IoT or S3	10%	Research and set up IoT or S3 to connect to amplify
Connect Raspberry Pi to lambda function	0%	Research and download AWS packages on pi
Create a new webpage for drag and drop	30%	Create the webpage and design GUI
Create drag and drop functionalities	0%	Create the lambda's to process the data and upload it to the patient's session data table in RDS database
Connect device to website	5%	Work with Bela to make the ESP 32 connect to the pi to collect data to be sent to the website

Raspberry Pi

- Collects data from device
- Set up AWS IoT packages on Raspberry Pi

•IoT and S3 allows devices to connect to AWS services like RDS or Lambda

- •Will connect to a lambda function to process CSV files
 - Must add patient's username and session ID to each row

•Inputs CSV file's data to patient_session_data table

• Use this data to create graphs on patient dashboard

Raspberry Pi IoT Connection Workflow

- Raspberry Pi collects data from device as CSV file
- Pi then publishes CSV processed rows to AWS IoT Core as MQTT messages
- IoT Core receives messages and processes them with the IoT Rule Engine
- Lambda then parses and cleans data and uploads it to the RDS database

•Can upload data to an S3 Bucket as well

Raspberry Pi S₃ Connection Workflow

- Raspberry Pi Uploads CSV file to an S3 Bucket using AWS SDK
 - •AWS SDK will have to be downloaded on Pi
- Triggers S3 Event Notification when file is uploaded
 - •Event invokes AWS Lambda function
- Lambda will parse and clean the CSV file
- Data will then be uploaded to the RDS database

S₃ Connection vs IoT connection

- IoT Core is good for...
 - Continuous connection
 - Small data uploads
 - Supporting many devices
- Cons of IoT...
 - Message size limit of 128kb
 - Needs continuous connection to work effectively

- S3 Buckets are good for...
 - Better support for large data uploads up to 5Tb
 - Can handle thousands of file uploads at once
 - Cost effective
 - Only pay for what you upload
- Cons of S3 Buckets...
 - Can create latency
 - Cannot handle continuous data streaming
 - Managing IAM roles can be cumbersome

Drag and Drop Upload

- Backup method to collect data from patients
- Should take a CSV file and process the data
 Add patient ID and session ID to every row
- In case the raspberry pi does not work, or patients have collected data already they can upload said data
- Create new page that is accessed through patient dashboard
 - "Add new data" button

Questions?

